
1 The algorithm for variable-order linear-chain
CRFs

In this section, we introduce three algorithms that constitute the main part of
this paper. One is ”Sum-Difference” algorithm, which is used to calculate the
expectations of the feature functions to estimate parameters. This algorithm
uses ”sum” scores and ”difference” ones when calculating forward and backward
scores. This way, we can apply dynamic programming. The other two are
decoding algorithm used to infer the best labels for an sequence of observations.
One process the sequences from head to tail and the other from tail to head.

1.1 Notations

We introduce the notations used in this paper.
| · | denotes the length of a sequence. x and y represent respectively a

sequence of observations and labels of length T and T + 2. y is a sequence
which has positions 0 and T +1, which represent respectively the beginning and
ending of a sequence. They have the labels lBOS and lEOS . Suppose we have a
set of labels Y = {l1, · · · , lL}.

We define the set of labels Yt at a particular position t as follows.

Yt =

 {lBOS} if t = 0
{lEOS} if t = T + 1
Y otherwise

(1)

We denote z ∈ Yn:m when a label sequence z satisfies |z| = m− n+ 1, ∀(t :
1 ≤ t ≤ m− n+ 1)zn ∈ Yn+t−1.

For a label sequence z, we define zi:j
def
= zi···j . When j < i, let zi:j = ϵ,

where ϵ represents an empty string.
When two label sequences z1 and z2 are concatenated into z3, we denote it

as z3 = z1 + z2.
When a label sequence z1 is a suffix of z2, we denote it as z1 ≤s z

2, otherwise
z1 ̸≤s z

2. For any label sequence z, ϵ ≤s z. When z1 is a proper suffix of z2, we
denote it as z1 <s z

2. The following two equations can be trivially derived:

z1 <s z
2, z1 ̸= ϵ⇒ z11:|z1|−1 <s z

2
1:|z2|−1 (2)

z1 <s z
3, z2 <s z

3 ⇒ z1 <s z
2 or z2 ≤s z

1 (3)

We define s(z1,S) as follows:

s(z1,S) = z2 if and only if z2 ∈ S and z2 <s z
1

and ∀(z ∈ S)z <s z
1 ⇒ z ≤s z

2 (4)

and call it longest proper suffix of z1 with respect to S. z1 may or may not be
an element of S.

1

Similarly, we define S(z1,S) as follows:

S(z1,S) = z2 if and only if z2 ∈ S and z2 ≤s z
1

and ∀(z ∈ S)z ≤s z
1 ⇒ z ≤s z

2 (5)

and call it the longest suffix of z1 with respect to S . S(z,S) = z if and only if
z is an element of S.

For any set S, let s(ϵ,S) = ⊥. Let ⊥ be an imaginary label sequence that
never equals to any other label sequences (∀(z)z ̸= ⊥) and let ⊥n be such a
label sequence that has the length n.

Let the feature functions be f1, · · · , fm. Each feature function is a binary
function that takes three arguments (obervations, label sequence, position) and
can be expressed as a product of two binary functions bi(x, t) (we call it obser-
vation function) and Li(y, t) (we call it label function).

fi(x,y, t) = bi(x, t)Li(y, t) (6)

Each Li is associated with a label sequence zi and is defined as follows:

Li(y, t) =

{
1 if yt−|zi|+1:t = zi

0 otherwise
(7)

We also define L′
i(y

s, t) and L′′(z) as alternate representations of the label
function, where ys is a suffix of a label sequence y and z is an arbitrary label
sequence. We use zero-based indexes for ys.

L′
i(ys, t) =

 1 if t+ |ys| − |y| − |zi|+ 1 ≥ 0 and
yt+|ys|−|y|−|zi|+1:t+|ys|−|y| = zi

0 otherwise
(8)

L′′
i (z) =

 1 if |z| ≥ |zi| and
z|z|−|zi|+1:|z| = zi

0 otherwise
(9)

We define f ′
i and f ′′

i as products of bi and L′
i, bi and L′′

i respectively.

f ′
i(x,y

s, t) = bi(x, t)L
′
i(y

s, t) (10)

f ′′
i (x, z, t) = bi(x, t)L

′′
i (z) (11)

(12)

When we define fi, f
′
i and f ′′

i as above, the following can be said:

fi(x,y, t) = f ′′
i (x,yt−|zi|+1:t, t) (13)

f ′
i(x,y

s, t) = f ′′
i (x,y

s
t+|ys|−|y|−|zi|+1:t+|ys|−|y|, t) (14)

2

1.2 Training of High-order CRF

Here is the expected sum of fi based on current parameters:

E[fi] =
∑

(x,ỹ)∈T

∑
y

P (y | x)
T+1∑

t=|zi|−1

fi(x,y, t) (15)

We will need expectations of fi later when we update the parameters. Here we
introduce a way to calculate them.

1.2.1 Patterns

We define Pt, the pattern set at the position t, as follows:

Pt = Yt ∪ {ϵ} ∪
T∪

t′=t

{zk1:|zk|−(t′−t) | bk(x, t) = 1, |zk| ≥ t′ − t} (16)

We call each element of Pt a pattern at the position t. A pattern is either
one of the label sequences that are associated with the feature functions or a
prefix of another pattern at the position t′ > t, with t′ − t label(s) removed.
When a label sequence y satisfies yt−|zp|+1:t = zp for a pattern zp at a position
t, we say that y contains zp at the position t.

When we define the pattern sets as in (16), the following can be said:

z ∈ Pt, z ̸= ϵ, t > 0⇒ z1:|z|−1 ∈ Pt−1 (17)

We can also say the following:

f ′′
i (x, z, t) = f ′′

i (x, S(z,Pt), t) (18)

Assume this is not true and that there is a feature function f ′′
i (x, S(z,Pt), t) =

0, f ′′
i (x, z

′, t) = 1 for a S(z,Pt) <s z′ ≤s z. This means that z′ ∈ Pt and this
contradicts with the definition of longest suffix given in (5).

1.2.2 Scores of Patterns

Considering positions 0 and T + 1 as the beginning and ending of a label se-
quence, conditional probability distributions of a linear-chan CRF is defined
as P (y|x) = Zx(y)/Zx, where Zx(y) = exp(

∑m
i=1

∑T+1
t=|zi|−1 fi(x,y, t)λi) and

Zx =
∑

y Zx(y). We call Zx(y) the score of y. Let σ(zp, t) denote the sum of
scores of label sequences y that contain zp at a position t. It can be expressed
in the following way:

σ(zp, t)
def
=

∑
y:y∈Y0:T ,yt−|zp|+1:t=z

exp

(
m∑
i=1

T+1∑
t′=1

fi(x,y, t
′)λi

)
(19)

Unlike first order linear-chain CRFs, we cannot directly decompose this using
forward and backward scores. Since the fact that a label sequence y contains

3

a pattern zp at a position t does not necessarily mean it is the longest pattern
that y contains at that position, backward scores cannot be determined. So we
introduce supplementary variables θ(zp, t) that denote the probability that a
label sequence y contains a pattern zp ∈ Pt at a position t and does not contain
any longer patterns at the same position, i.e. does not contain any patterns
that have zp as their longest proper suffix.

θ(zp, t)
def
=

∑
y:y∈Y0:T ,yt−|zp|+1:t=zp,∀(z′∈Pt,zp≤sz′)y

t−|z′|+1:t
̸=z′

exp

(
m∑
i=1

T+1∑
t′=1

fi(x,y, t
′)λi

)
=

∑
y:y∈Y0:T ,yt−|zp|+1:t=zp,∀(z′∈Pt,s(z′,Pt)=zp)y

t−|z′|+1:t
̸=z′

exp

(
m∑
i=1

T+1∑
t′=1

fi(x,y, t
′)λi

)
(20)

When we define θ(zp, t) like this, we can express σ(zp, t) as a sum of θ.

σ(zp, t)
def
=

∑
z:z∈Pt,zp≤sz

θ(z, t) (21)

By the definition of pattern given in (16), if a label sequence y contains zp

at a position t and does not contain any longer patterns, we can know that
there are no feature functions that are affected by the labels before t− |z|+ 1.
So we can decompose θ(zp, t) in three parts, the forward part (1 ≤ t′ ≤ t) and
backward part (t + 1 ≤ t′ ≤ T + 1). The forward part can also be represented
in the form of substraction. Let α(zp, t) and β(zp, t) denote the forward and
backward parts respectively.

θ(zp, t) =

 ∑
z:z∈Y0:t,zt−|zp|+1:t=zp,∀(z′∈Pt,s(z′,Pt)=zp)z

t−|z′|+1:t
̸=z′

exp

(
m∑
i=1

t∑
t′=1

fi(x, z, t
′)λi

)
 ∑

z:z∈Yt+1:T+1

exp

(
m∑
i=1

T+1∑
t′=t+1

f ′
i(x, z

p + z, t′)λi

)
def
= α(zp, t)β(zp, t) (22)

1.2.3 Pattern weights

For a pattern zp ∈ Pt and a position t, we define w(zp, t) as follows:

w(zp, t)
def
=

∑
i:zi=zp,bi(x,t)=1

λi (23)

4

This is the sum of the weights of the feature functions associated with the
pattern zp at the position t.

We also define W (zp, t) for a pattern zp ∈ Pt and a position t as follows:

W (zp, t)
def
=

∑
i:zi≤szp,bi(x,t)=1

λi =
m∑
i=1

f ′′
i (x, z

p, t)λi (24)

This is the sum of the weigths of the feature functions associated with the
pattern zp or any of its suffixes at the position t. From (24) and (23), we can
express W using w as follows:

W (zp, t) =
∑

i:zi∈Pt,zi≤szp

w(zi, t) (25)

When we define W and w as above, we can say that for any zp ̸= ϵ,
W (zp, t) = W (s(z,Pt), t) + w(zp, t).

1.2.4 The Forward Variables

As shown in (22), α(zp, t) is defined for a pattern zp and a position t ≥ 1 as
follows:

α(zp, t) =
∑

z:z∈Y0:t,zt−|zp|+1:t=zp,∀(z′∈Pt,s(z′,Pt)=zp)z
t−|z′|+1:t

̸=z′

exp

(
m∑
i=1

t∑
t′=1

fi(x, z, t
′)λi

)
(26)

Let α(ϵ, t) = 0 for any t. In order to calculate these using dynamic pro-
gramming, we also define γ(zp, t) for a pattern zp ∈ Pt and a position t as
follows:

γ(zp, t)
def
=

∑
z:z∈Y0:t,zt−|zp|+1:t=zp

exp

(
m∑
i=1

t∑
t′=1

fi(x, z, t
′)λi

)
(27)

When we define α and γ like this, we can say the following using (24):

α(zp, t) =
∑

z:z∈Y0:t,zt−|zp|+1:t=zp,∀(z′∈Pt,s(z′,Pt)=zp)z
t−|z′|+1:t

̸=z′

exp

(
m∑
i=1

t−1∑
t′=1

fi(x, z1:|z|−1,t′)λi

)
exp

(
m∑
i=1

f ′′
i (x, z

p, t)λi

)

=

γ(zp1:|zp|−1, t− 1)−
∑

z:z∈Pt,s(z,Pt)=zp

(
γ(z1:|z|−1, t− 1)

)
exp(W (zp, t)) (28)

γ(zp, t) =
∑

z∈Pt,zp≤sz

α(z, t) (29)

5

1.2.5 The Backward Variables

Here we rewrite the definition of β(zp, t) given in (22) using f ′
i defined in (11):

β(zp, t)
def
=

∑
z:z∈Yt+1:T+1

exp

(
m∑
i=1

T+1∑
t′=t+1

fi(x,⊥t−|zp|+1 + zp + z, t′)λi

)

=
∑

z:z∈Yt+1:T+1

exp

(
m∑
i=1

T+1∑
t′=t+1

f ′
i(x, z

p + z, t′)λi

)
(30)

In order to calculate these using dynamic programming, we also define
δ(zp, t) for a pattern zp ∈ Pt and a position t as follows:

δ(zp, t) =

∑

z∈Yt+1:T+1
exp

(∑m
i=1

∑T+1
t′=t+1 f

′
i(x, z, t

′)λi

)
if zp = ϵ∑

z∈Yt+1:T+1

(
exp

(∑m
i=1

∑T+1
t′=t+1 f

′
i(x, z

p + z, t′)λi

)
−

exp
(∑m

i=1

∑T+1
t′=t+1 f

′
i(x, s(z

p,Pt) + z, t′)λi

))
otherwise

(31)

When we define β and δ like this, we can say the following:

δ(zp, t) =

∑

z∈Pt+1,z1:|z|−1=zp (β(z, t+ 1) exp(W (z, t+ 1)) if zp = ϵ∑
z∈Pt+1,z1:|z|−1=zp (β(z, t+ 1) exp(W (z, t+ 1))−

β(s(z,Pt+1), t+ 1)a exp(W (s(z,Pt+1), t+ 1))) otherwise

(32)

β(zp, t) =
∑

z∈Pt,z≤szp

δ(z, t) (33)

Here we present the derivation of (32) for zp ̸= ϵ, which is not straightfor-
ward. First, we rewrite the right hand side of (31) as follows:

∑
z∈Yt+2:T+1

∑
z′∈Yt+1

(
exp

(
m∑
i=1

T+1∑
t′=t+2

f ′
i(x, z

p + z′ + z, t′)λi

)
exp

(
m∑
i=1

f ′′
i (x, z

p + z′, t+ 1)λi

)
−

exp

(
m∑
i=1

T+1∑
t′=t+2

f ′
i(x, s(z

p,Pt) + z′ + z, t′)λi

)
exp

(
m∑
i=1

f ′′
i (x, s(z

p,Pt) + z′ + z, t)λi

))
(34)

Using the equation (18), we can rewrite (34) as follows: ∑
z∈Yt+2:T+1

∑
z′∈Yt+1:t+1(

exp

(
T+1∑

t′=t+2

m∑
i=1

f ′
i(x, S(z

p + z′,Pt+1) + z, t′)λi

)
exp

(
m∑
i=1

f ′′
i (x, S(z

p + z′,Pt+1), t+ 1)λi

)
−

exp

(
T+1∑

t′=t+2

m∑
i=1

f ′
i(x, S(s(z

p,Pt) + z′,Pt+1) + z, t′)λi

)
exp

(
m∑
i=1

f ′′
i (x, S(s(z

p,Pt) + z′,Pt+1), t)λi

))
(35)

6

Here we can say the following:

s(zp + z′,Pt+1) ≤s s(z
p,Pt) + z′ (36)

Assume (36) is not true. By the definition of longest proper suffix in (4), s(zp+
z′,Pt+1) <s z

p + z′ and s(zp,Pt) + z′ <s z
p + z′. From (3) and the assumption

that (36) is not true, s(zp,Pt) + z′ <s s(zp + z′,Pt+1). Let z′′ = s(zp +
z′,Pt+1). Since z′′ ∈ Pt+1 and z′′ ̸= ϵ, we can derive z′′1:|z′′|−1 ∈ Pt from (17)

and s(zp,Pt) <s z′′1:|z′′|−1 <s zp from (2). This contradicts the definition of

longest proper suffix in (4).
From the definition of longest proper suffix given in (4), we can also say that

there is no such z′′ ∈ Pt+1 that satisfies s(zp + z′,Pt+1) <s z
′′ <s z

p + z′.
From the above argument, we can say the following:

S(s(zp,Pt) + z′,Pt+1) = s(zp + z′,Pt+1) (37)

When zp + z′ ̸∈ Pt+1, we can say the following from (4) and (5).

S(zp + z′,Pt+1) = s(zp + z′,Pt+1) (38)

So in (35), for zp + z′ ̸∈ Pt+1, we can cancel out the right and left sides of the
subtraction and rewrite it as follows:

∑
z∈Yt+2:T+1

∑
z′∈Pt+1,z′

|z′|−1
=zp

(
exp

(
T+1∑

t′=t+2

m∑
i=1

f ′′
i (x, z

′ + z, t′)λi

)
exp

(
m∑
i=1

fi(x, z
′, t+ 1)λi

)
−

exp

(
T+1∑

t′=t+2

m∑
i=1

fi(x, s(z
′,Pt+1) + z, t′)λi

)
exp

(
m∑
i=1

fi(x, s(z
′,Pt+1) + z,Pt+1), t)λi

))
(39)

Applying the definition of β given in (30) and that of W given in (24), we can
derive the equation (32).

Now that α’s at a position t can be calculated using γ’s at the position t− 1
and γ’s using α’s at the same position, β’s at a position t using δ’s at the position
t+1 and δ’s using β’s at the same position and α(BOS, 0) = 1, δ(ϵ, T +1) = 1,
we can calculate all the α’s, β’s, γ’s and δ’s using dynamic programming. We
can then calculate θ’s using α’s and β’s, and then, σ’s using θ’s.

The normalization factor Zx can be expressed as γ(ϵ, T + 1), because:

γ(ϵ, T +1) =
∑

z:z∈Y0:T+1,zT+2:T+1=ϵ

exp

(
m∑
i=1

t∑
t′=1

fi(x, z, t
′)λi

)
=
∑
y

Zx(y) = Zx

(40)
So we can now calculate the expectations of each feature function as follows:

P (fi | x) =
T+1∑
t=1

σ(zi, t)/Z(x) (41)

7

1.2.6 The algorithm to calculate the variables

Here we present the algorithm that calculates efficiently the variables introduced
in the previous section.

First we enumerate the patterns that belong to Pt at positions t = 1, · · · , T+
1. We also enumerate the feature functions whose values equal to 1 at the
position t if a label sequence contains the pattern zp at that position and make
a set Fzp,t which has them as elements. This procedure can be described as in
Algorithm 1. We can easily link a pattern z ̸= ϵ ∈ Pt to its corresponding prefix

Algorithm 1 Enumerate patterns

for t = 1 to T + 1 do
F ← {fk | bk(x, t) = 1}
for all fi ∈ F do
Fzi,t ← Fzi,t ∪ {fi}
for j = 0 to |zi| do
Pt−j ← Pt−j ∪ {zi1:|z|−j}

end for
end for

end for

pattern, which we here define as z1:|z|−1 ∈ Pt−1. We can also link a pattern
z ∈ P to its longest proper suffix s(z, Pt) by storing the pattern sets in tries
using the reversed lavel sequences of patterns as keys. We can sort the patterns
in a order such that z1 appears before z2 when z1 <s z2. We call this order
ascending order and the reverse descending order. Since the sorting order of the
patterns and their prefix patterns and longest proper suffixes are invariable over
iterations, we only have to execute this procesure once and store the result.

We execute Algorithm 2 for each iteration to calculate the expectations of
the feature functions. Assume that all w(z, t) and other numeric variables are
initialized by 0.

The complexity of this procedure is

O

(
T+1∑
t=1

∑
zp:zp∈Pt

|Fzp,t|+
T+1∑
t=1

|Pt|

)
(42)

for an iteration on a sequence.
γ’s and δ’s are temporary variables and old ones can be discarded.

1.3 Inference

We will describe the procedure to infer the labels using the estimated parame-
ters.

First, the label sequence which we want to infer can be described as follows:

y∗ = argmax
y

1

Z(x)
exp

(∑
t

∑
i

λifi(x,y, t)

)

8

Algorithm 2 Sum-difference

for t = 1 to T + 1 do
for all z ̸= ϵ ∈ Pt in ascending order do
for all fi ∈ Fz,t do
w(z, t)← w(z, t) + λi

end for
W (z, t)← W (s(z,Pt), t) + w(z, t)

end for
end for
γ(ϵ, 0)← 1, γ(lBOS, 0)← 1
for t = 1 to T + 1 do
for all z ̸= ϵ ∈ Pt in descending order do
α(s(z,Pt), t)← α(s(z,Pt), t)− γ(z1:|z|−1, t− 1)
α(z, t)← (α(z, t) + γ(z1:|z|−1, t− 1)) exp(W (z, t))

end for
α(ϵ, t)← 0
for all z ̸= ϵ ∈ Pt in descending order do
γ(z, t)← γ(z, t) + α(z, t)
γ(s(z,Pt), t)← γ(s(z,Pt), t) + γ(z, t)

end for
end for
Z(x)← γ(ϵ, T + 1)
δ(ϵ, T + 1)← 1
for t = T + 1 downto 1 do
β(ϵ, t)← δ(ϵ, t)
for all z ̸= ϵ ∈ Pt in ascending order do
β(z, t)← β(s(z,Pt), t) + δ(z, t)

end for
for all z ̸= ϵ ∈ Pt do
δ(z1:|z|−1, t − 1) ← δ(z1:|z|−1, t − 1) + β(z, t) exp(W (z, t)) −
β(s(z,Pt), t) exp(W (s(z,Pt)))

end for
end for
for t = 1 to T + 1 do
for all z ̸= ϵ ∈ Pt in descending order do
θ(zp, t)← α(zp, t) exp(W (zp, t))β(zp, t)
σ(z, t)← σ(z, t) + θ(z, t)
σ(s(z,Pt), t)← σ(s(z,Pt), t) + σ(z, t)
for all fi ∈ Fz,t do
E[fi]← E[fi] + σ(z, t)/Z(x)

end for
end for

end for

9

= argmax
y

exp

(∑
t

∑
i

λifi(x,y, t)

)
(43)

The algorithm we present here has the complexity ofO
(∑T+1

t=1

∑
i:b(x,t)=1 1 + L

(∑T+1
t=1

∑
zp:zp∈Pt

1
))

,

which is O(L) times bigger than that of training for one iteration.

1.3.1 Inference Algorithm

We have to calculate the W for each pattern beforehand. This procedure, Algo-
rithm 3, is the same as the one that we used in the Sum-Difference algorithm.

Algorithm 3 Calculate weights

for t = 1 to T + 1 do
for all z ̸= ϵ ∈ Pt in ascending order do

for all fi ∈ Fz,t do
w(z, t)← w(z, t) + λi

end for
W (z, t)←W (s(z,Pt), t) + w(z, t)

end for
end for

We define p(zp, t) and q(zp, t) for a pattern zp ∈ Pt as follows.

p(zp, t)
def
= max

z:z∈Pt−1,z
p

1:|zp|−1
≤sz,∀(z′:z′∈Pt−1,zp≤sz′)z′ ̸≤sz

(p(z, t− 1)) · exp(W (zp, t)) (44)

q(zp, t)
def
= arg max

z:z∈Pt−1,z
p

1:|zp|−1
≤sz,∀(z′:z′∈Pt−1,zp≤sz)z′ ̸≤sz

(p(z, t− 1)) (45)

When we define p and q like this, we can calculate them using the Algorithm
4. After that, we can obtain the optimum label sequence y∗ using the Algorithm
5.

10

Algorithm 4 Inference (1)

p(ϵ, 0)← 1, p(lBOS , 0)← 1
for t = 1 to T + 1 do
for all z ̸= ϵ ∈ Pt in descending order do

if this is the first iteration or the last label in z has changed then
z′ ← the first z′ ∈ Pt−1 in descending order
for all z′′ ∈ Pt−1 do
r(z′′, t− 1)← p(z′′, t− 1)
u(z′′, t− 1)← z′′

end for
end if
while z′ ̸= z1:|z|−1 do
if r(z′, t− 1) > r(s(z′, t− 1), t− 1) then
r(s(z′, t− 1), t− 1)← r(z′, t− 1)
u(s(z′, t− 1), t− 1)← u(z′, t− 1)

end if
z′ ← next z′ ∈ Pt−1 in descending order

end while
p(z, t)← r(z′, t) exp(W (z, t))
q(z, t)← u(z′, t)

end for
end for

Algorithm 5 Inference (2)

z← argmaxz∈PT+1
p(z, T + 1)

for t = T + 1 to 1 do
y∗
t ← z|z|

z← q(z, t)
end for
y∗
0 ← lBOS

11

